Cross-industry studies show that on average, less than half of an organization’s structured data is actively used in making decisions—and less than 1% of its unstructured data is analyzed or used at all. More than 70% of employees have access to data they should not, and 80% of analysts’ time is spent simply discovering and preparing data. Data breaches are common, rogue data sets propagate in silos, and companies’ data technology often isn’t up to the demands put on it.
The “plumbing” aspects of data management may not be as sexy as the predictive models and colorful dashboards they produce, but they’re vital to high performance. As such, they’re not just the concern of the CIO and the CDO; ensuring smart data management is the responsibility of all C-suite executives, starting with the CEO.
We help companies clarify the primary purpose of their data, and it guides them in strategic data management. Unlike other approaches we’ve seen, ours requires companies to make considered trade-offs between “defensive” and “offensive” uses of data and between control and flexibility in its use, as we describe below. Although information on enterprise data management is abundant, much of it is technical and focused on governance, best practices, tools, and the like. Few if any data-management frameworks are as business-focused as ours: It not only promotes the efficient use of data and allocation of resources but also helps companies design their data-management activities to support their overall strategy.
We understand the importance to distinguish between information and data and to differentiate information architecture from data architecture. Many organizations have attempted to create highly centralized, control-oriented approaches to data and information architectures. Previously known as information engineering and now as master data management, these top-down approaches are often not well suited to supporting a broad data strategy. Although they are effective for standardizing enterprise data, they can inhibit flexibility, making it harder to customize data or transform it into information that can be applied strategically. In our experience, a more flexible and realistic approach to data and information architectures involves both a single source of truth (SSOT) and multiple versions of the truth (MVOTs). The SSOT works at the data level; MVOTs support the management of information.
DEFENSE | OFFENSE | |
---|---|---|
KEY OBJECTIVES | Ensure data security, privacy, integrity, quality, regulatory compliance, and governance | Improve competitive position and profitability |
CORE ACTIVITIES | Optimize data extraction, standardization, storage, and access | Optimize data analytics, modeling, visualization, transformation, and enrichment |
DATA-MANAGEMENT ORIENTATION | Control | Flexibility |
ENABLING ARCHITECTURE | SSOT(Single source of truth) | MVOTs(Multiple versions of the truth) |